Comparison of two strategies, CTC and CMM, to combine m classifiers in a single comprehensible one
نویسندگان
چکیده
Accurate prediction is probably the most pursued objective when solving real problems with machine learning, but there are situations where, added to the prediction, it is important to obtain a comprehensible output. The aim of this work is to compare the behaviour of two strategies to combine the knowledge of m classifiers in a single one in order to maintain the explaining capacity of the final classier: Consolidated Tree’s Construction (CTC) algorithm and Combined Multiple Models (CMM) algorithm. The comparison is done from three points of view: accuracy, complexity and stability in explanation. Experimental results show that the use of CTC would be more recommendable than the use of CMM because, even if from the accuracy point of view the behaviour of CTC and CMM is similar, CT trees will give a more comprehensible (59.2% simpler) and steadier explanation (structure 50% steadier) than CMM classifiers.
منابع مشابه
CTC: An Alternative to Extract Explanation from Bagging
Being aware of the importance of classifiers to be comprehensible when using machine learning to solve real world problems, bagging needs a way to be explained. This work compares Consolidated Tree’s Construction (CTC) algorithm with the Combined Multiple Models (CMM) method proposed by Domingos when used to extract explanation of the classification made by bagging. The comparison has been done...
متن کاملImproving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran
An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملطبقهبندی آریتمیهای قلبی مبتنی بر ترکیب نتایج شبکههای عصبی با نظریه شواهد دمپستر- شفر
Cardiac arrhythmias are one of the most common heart diseases that may cause the death of the patient. Therefore, it is extremely important to detect cardiac arrhythmias. 3 categories of arrhythmia, namely, PAC, PVC, and normal are considered in this paper based on classifier fusion using evidence theory. In this study, at first a sample is carrying out the ECG signal with 250 point. Moreove...
متن کاملEnsemble strategies to build neural network to facilitate decision making
There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006